
PICKING A RENDERING
MODE
Standing in the middle of yesterday
Where it all went wrong—where we made mistakes
I’m sorry for the things I forgot to say
But it won’t be long until it will be okay

—RAINE MAIDA

SUPPOSE YOU’VE SPENT A FEW YEARS and several million
dollars developing a product that rapidly scans Dewey
Decimal numbers on book spines and sends those num-
bers to a central database. This enables libraries to keep
track of what they physically have on hand. You sell your
product to hundreds of libraries all over the country and
get a lot of rave reviews.

Then one day a large number of libraries decide to
abandon Dewey and go to an alternate system, one that
allows for more expansion. Many of your customers will
be making this switch, but they still want to use your
device. They’re willing to pay for an upgrade, and you
could provide one, but if you change the product to use
this new system, it won’t read the Dewey numbers any-
more. That would prevent your other, Dewey-based
clients from buying the upgrade and would turn away
some new customers.

1245xAPPA 7/17/02 9:26 AM Page 1

2

The simple answer is to build both systems into the device and put a switch on
the side so that users can pick which scanning mode they want. This gives you
a more f lexible device that doesn’t turn away any customers.

So, what does this have to do with CSS? To answer this question, let’s take a
quick look backward.

A Short History of Incompatibility
One of the great tragedies in the development of the Web was the browser wars
that most digital historians agree began in earnest in 1997. There is some dis-
agreement over whether the conf lict ever ended, although many feel that active
combat ceased somewhere around late 1999 or early 2000. The greatest casualty
of this conf lict was the interoperability that was the Web’s foundation. In the
quest to create the “killer app,” browser companies devised one proprietary
feature after another.

At the height of the conf lict (primarily 1998 and 1999), the two main combat-
ants were Netscape Navigator 4 and Internet Explorer 4. These two browsers
had completely different document object models, differences in their handling
of HTML layout and whitespace, and a vast slew of bugs, shortcomings, and
f laws in their support for CSS. In desperation, many developers turned to
serving a different style sheet for each browser rather than trying to navigate
the minefield of incompatibilities that had been created.

If one or the other of these browsers had been standards compliant, designers
might have had a fighting chance, but sadly that was not so. The effort to
accommodate browser bugs taught legions of designers bad habits and promoted
thinking that ran counter to the W3C specifications. Even worse, it made their
documents a soup of tricks that would never validate and that were intended
(consciously or otherwise) to only work in the browsers that existed at the time.

All of this left the battlefield littered with the sanity of more than one designer.
When Internet Explorer 5.0 was released on Windows, things didn’t get any
better. Although it was moving forward and expanding the model laid down by
IE4, Netscape was regrouping and not releasing anything new. The drastic limi-
tations of Navigator 4 were still of primary concern and prevented the adoption
of many a cool new trick.

Enter the Future of the Web
It was the release of Internet Explorer 5.0 for Macintosh that first pointed to
a way out of the morass that the browser wars had created. Programmers for
IE5/Mac recognized that no browser could afford to break old pages. To permit
a move to standards-based markup, the very behaviors on which the old pages

1245xAPPA 7/17/02 9:26 AM Page 2

were based would have to be broken. The solution was to implement both a
standards-compliant rendering engine and the old, “bugwards-compatible”
behaviors…and then provide a mechanism that would let the author of the doc-
ument choose which rendering mode the browser should use in displaying the
document.

Several mechanisms were considered, but the one that seemed to make the most
practical sense was the DOCTYPE that all documents are supposed to contain. In
theory, every HTML document should declare its document type using a
directive at the very top of the file. For example:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN”
“http://www.w3.org/TR/REC-html40/strict.dtd”>

<html>

In this example, the document has been marked as using strict HTML 4.0.
There are many DOCTYPEs, some of which are listed in Table 1.

Ta b l e 1 A Sampling of DOCTYPE Value s
Document Type DOCTYPE

HTML 3.2 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2

Final//EN”>

HTML 4.0 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0

Transitional Transitional//EN”>

HTML 4.0 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0

Frameset Frameset//EN”

“http://www.w3.org/TR/REC-html40/frameset.dtd”>

HTML 4.0 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN”

Strict “http://www.w3.org/TR/REC-

html40/strict.dtd”>

HTML 4.01 <!DOCTYPE HTML PUBLIC “-//W3C//DTD

Transitional HTML 4.01 Transitional//EN”>

HTML 4.01 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

Strict “http://www.w3.org/TR/REC-

html40/strict.dtd”>

XHTML 1.0 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0

Strict Strict//EN”

“http://www.w3.org/TR/xhtml1/xhtml1-strict.dtd”>

3

What DOCTYPE?
As of this writing, it is the
case that the majority of
Web documents contain
no DOCTYPE at all.

1245xAPPA 7/17/02 9:26 AM Page 3

4

As you can see in Table 1, some of the DOCTYPEs have URIs and some do not.
This is not a hard rule: Any DOCTYPE can have a URI or leave it off. Thus, they
were included at random in the examples shown in the table. As you’ll see later,
however, the presence or absence of a DOCTYPE URI can affect which rendering
mode gets picked.

The mechanism of DOCTYPE switching is, at its core, fairly sensible and straight
forward:

� Documents with older or Transitional DOCTYPEs (or no DOCTYPE at all) are
displayed using the “loose rendering” or “quirks” mode. This mode, also
called “bugwards” compatibility, emulates legacy bugs and behaviors of
version 4 browsers.

� Documents with Strict or XHTML DOCTYPEs are displayed using the “strict
rendering” mode. This mode follows W3C specifications for HTML,
CSS, and other layout languages as closely as possible.

Although incredibly useful for authors, DOCTYPE switching might have remained
no more than a curiosity had it only been implemented in IE5 for the
Macintosh. Happily, Netscape 6 and Internet Explorer 6 for Windows have
since adopted it. The door to a standards-compliant Web stands wide open.

DOCTYPE Switching in Detail
If you’re going to step through a door, it’s usually a good idea to know some-
thing about what’s on the other side. It’s also a good idea to know how to get
through the door in the first place. To that end, Table 2 provides a sampling of
DOCTYPEs and the effect they’ll have in the various Web browsers that recognize
DOCTYPE switching at all.

Ta b l e 2 DOCTYPE Switching in Various Browser s
DOCTYPE IE6/ IE5/ NS6.0/

Win Mac NS6.1/
NS6.2

No DOCTYPE provided Q Q Q

Unknown DOCTYPE S S Q

HTML 2.0 Q Q Q

HTML 3.2 Q Q Q

HTML 4.0 Frameset Q Q Q

HTML 4.0 Frameset + URI S S Q

HTML 4.0 Transitional Q Q Q

HTML 4.0 Transitional + URI S S Q

HTML 4.0 Strict S S S

HTML 4.0 Strict + URI S S S

And the Other
Browsers?

Netscape Navigator 4.x
came long before DOCTYPE

switching was even
conceived, so it should be

assumed that it’s always in
quirks mode (and a buggy

form of it at that). Opera 6
and earlier versions do not

bother with DOCTYPE
switching and should be

assumed to be in strict
mode. Note that Opera

might still have bugs, but
its behavior is very close

to the strict modes of
other browsers.

URL or URI?
Although most Web

authors are familiar with
the acronym URL, which

stands for uniform resource
locator, the term URI isn’t

as common. URI stands for
uniform resource identifier.

The primary difference is
that whereas a URL must

point to a resource on the
Web, a URI does not have
this restriction. However,
URIs must be unique. An

analogy would be the word
“heaven.” It may or may

not have a physical loca-
tion, but either way it

describes a unique concept.

1245xAPPA 7/17/02 9:26 AM Page 4

DOCTYPE IE6/ IE5/ NS6.0/
Win Mac NS6.1/

NS6.2

HTML 4.01 Frameset Q Q Q

HTML 4.01 Frameset + URI S S S

HTML 4.01 Transitional Q Q Q

HTML 4.01 Transitional + URI S S S

HTML 4.01 Strict S Q S

HTML 4.01 Strict + URI S S S

Any known XHTML S S S

Any known XHTML + URI S S S

S = Strict mode Q = Quirks mode

Differences in Rendering Modes
If you plan to upgrade your old pages to new markup and a new DOCTYPE, it
will help to know what changes you’re likely to encounter. There are profound
changes such as an altered meaning for the properties width and height, and
there are subtle changes like inheritance into tables that can still wreak havoc
with legacy designs. There might even be differences in the way the CSS can
be written, depending on the browser.

The following information, while not a comprehensive list of every last differ-
ence between quirks and strict modes in various browsers, is an attempt to touch
on the areas most likely to cause an author trouble.

Inheritance and Tables
The biggest area of potential trouble relates to tables and their inheritance (or
lack thereof) of styles. In older browsers such as Navigator 4.x and Internet
Explorer 5.x (and earlier), styles such as fonts and font sizes were not inherited
into tables. Consider the following simple test case:

<body style=”font: large sans-serif; color: purple;”>
<table>
<tr><td>Hey, it’s text in a table!</td></tr>
</table>

5

1245xAPPA 7/17/02 9:26 AM Page 5

6

In old browsers, the text within the table would have been neither large nor in a
sans-serif font. In old versions of Explorer, the text would not even be purple;
instead, it would remain the user’s default text color (usually black).

In quirks mode, this lack of inheritance is preserved. In strict mode, all styles are
inherited by text within tables. This can actually lead to trouble due to another
legacy bug, this one in Navigator 4.x.

Let’s say an author wanted the text on his page to be smaller than the user’s
default. In most browsers, you can get that effect by writing something like this:

body {font-size: 0.8em;}

However, because the value of font-size (among others) was not inherited in
tables, a common workaround was to assign the same values to table cells.

body, td, th {font-size: 0.8em;}

This made font sizes basically consistent throughout the document in 1998-era
browsers. Unfortunately, in modern browsers, the preceding rule will make text
inside of tables a maximum of 64% of the user’s default and possibly smaller!

This happens because when a browser allows properties like font-size to inherit
(as it should), you have a situation in which a table cell, which is a descendant of
the body element, has its text set to 0.8em of 0.8em of the user’s default font-
size setting, which yields 0.64em. If there is a table nested within a table, its text
will be 0.64em times 0.8em, or 0.512em. That’s a shade over half the user’s default
font size!

An easy way to see this sort of effect is to set up a number of lists nested inside
each other, going to at least three levels of nesting.

list item

sublist item

subsublist item

Now add to this document the style ul {font-size: 0.8em;}. Each level of
nested list will get smaller and smaller, just as nested tables will do when
inheritance works properly.

Reducing the Font
The practice of making a

page’s text smaller than the
user’s default is generally

thought to be a poor
authoring practice.

Unfortunately, browser
defaults are usually larger

than most designers would
like. There is no perfect

answer, but think carefully
about reducing font sizes
because you might make
the text too small for the
user to read comfortably.

1245xAPPA 7/17/02 9:26 AM Page 6

7

T H E S A D S T O R Y O F T A B L E S

Upon making the switch from legacy authoring and the styling of tables, many an
author is inclined to ask why tables were so badly broken in older browsers. There were
many reasons, not the least of which was that although the browsers were good efforts
for their time, they’ve come to be seen for what they were: rush jobs to cram many new
“features” into the browsers so that they looked much better than the previous versions.
As a result, these browsers weren’t well engineered, and designers have paid the price
for all the years since then.

In the case of Navigator 4.x, the culprit was the rendering engine itself. Utilizing the
same codebase that had been evolving ever since Netscape 1.0, the rendering engine in
NN4.x was starting to buckle under its own weight. In a certain sense, NN4.x
treated tables almost as if they were separate documents that had been inserted into the
main document—and this caused inheritance to fail.

In Explorer’s case, the engine was new but the thinking behind it wasn’t. What
happened here was that the browser attempted to enforce certain default styles on tables.
It was almost as if the browser kept internal styles that read something like this:

table {font-size: [[default_user_font_size_setting]];
color: [[default_user_text_color_setting]];}

So, in a typical browser installation, table text would always be black and 16 points
in size. (It would inherit the font-family, though, strangely enough.)

Whatever the rationale, the fact remained that styling tables became a major source
of authorial pain, and the loud complaints over this issue helped encourage browser
vendors to push much harder toward standards compliance.

Case Sensitivity
In the HTML 4.01 specification, class and id values are defined to be case
sensitive; that is, they must have the same capitalization. In other words, Hello
and HelLO are not the same thing. Thus, you can run into situations such as
the following:

<html><head><title>Case Sensitivity</title>
<style type=”text/css”>
p.TestThisClass {color: red;}
</style>
</head>
<body>
<p class=”testthisclass”>This text isn’t red!</p>
</body>
</html>

,,

The Special Case
of id
Although id values are
case sensitive, there can
be no case insensitive
matches within an HTML
document. In other words,
although TestID and
testid are not the same
thing, only one of them
can be found within the
source of a given docu-
ment. The same is true of
name values, as it happens.

1245xAPPA 7/17/02 9:26 AM Page 7

8

Browsers from the version 4 era treated class and id values as being case insen-
sitive, which would make the text in the preceding code block red. Modern
browsers in strict mode will not color the paragraph red.

Because there is no penalty for making sure that all of your CSS rules and
HTML-based values for class and id have the same case, you should always
make sure the case matches between the two.

class and id, Take Two
There were some other oddities concerning class and id. Somewhat strangely,
it was not permissible under CSS1 to begin class and id values with a digit
(0–9), but some browsers allowed you to do this. Modern strict-mode browsers
will very likely ignore any class or id value that begins with a digit, so if you
have an id called 1st, you’ll need to rename it.

Another weirdness deserves mention even though it isn’t precisely a strict/quirks
issue. Both CSS1 and CSS2 did not permit the use of underscores in class and
id values, which made values like test_class illegal. Explorer has always allowed
underscores, but Navigator 4.x did not. After CSS2 was published, some errata
were added, and one of those was to allow underscores. Although this means
that most browsers are now compliant and allow underscores, some do not.

Value Problems
This section belongs entirely to Internet Explorer. In IE4.x/Win and IE5.x/Win,
you were able to write fairly sloppy values. For example:

h1 {color: FF0000;} /* missing the octothorpe! */
h2 {font-size: 18 px;} /* one too many spaces */
table {width: 500;} /* where’s the unit? */

In the first rule, the color value is missing the octothorpe (#) that is required in
front of any hexadecimal color value. The second rule has an invalid space
between the number 18 and the unit px, and this entirely changes the meaning
of the value. For the third rule, there is no unit at all. Should the table be 500
furlongs wide? 500 stadia? 500 angstroms?

The correct forms of these rules is as follows:

h1 {color: #FF0000;}
h2 {font-size: 18px;}
table {width: 500px;}

Internet Explorer 6 in strict mode will properly ignore the first set of rules as
incorrect. If you’ve spent the last year or three learning bad authoring habits
because they worked in Explorer, it’s time to unlearn those habits.

Avoid Underscores
Because of their twisted
support history, you are

strongly encouraged not to
use underscores in class

and id values. Hyphens
are permitted and are
a common substitute

(as in test-class).

A Quick Aid To
Learning

One of the fastest ways to
catch errors in your CSS,

and thus learn good
authoring habits, is to use
a CSS validator. These are
programs that check your
CSS for syntax errors and

common mistakes. The W3C
offers a good one at

http://jigsaw.w3.org/

css-validator/. Note that
validators will not prevent

you from making all
possible mistakes, but they

will help you avoid
basic errors.

1245xAPPA 7/17/02 9:26 AM Page 8

Changing Width and Height
This is by far the change that will be the biggest surprise to authors who are
making the switch from legacy to standards-compliant layout…especially those
authors who did any CSS positioning or attempted pixel-precise layout of
elements in Explorer 5.x.

This topic is best described by using diagrams. In Figure 1, you see the
element box as described in CSS1 and CSS2.

9

Notice that the properties width and height describe the size of the content-
area. If there is any padding or borders, these are added to the content-area.
For example, assume the following:

div.illus {width: 200px; height: 150px;
padding: 20px; margin: 10px; border: 3px double black;}

As per the preceding styles, the content-area is 200 pixels wide by 100 pixels
tall. The distance from the outer edge of the left border to the outer edge of the
right border is 246 pixels (3 + 20 + 200 + 20 + 3). From the left outer margin
edge to the right is 266 pixels, after you add 10 pixels of margin on each side.
Similarly, the distance from the top border edge to the bottom is 196 pixels
and from the top margin edge to the bottom is 216 pixels.

Now examine Figure 2, which shows the Internet Explorer 4.x and 5.x
element box.

padding

padding

margin

border margin

border

outer margin edge

outer margin edge

content-area

width

height

F I G U R E 1
The CSS element box.

1245xAPPA 7/17/02 9:26 AM Page 9

10

F I G U R E 2
The Internet Explorer
(legacy) element box.

Note the differences in the definition of height and width. In old Explorer
versions, these property values described the aggregate of the content-area,
padding, and borders instead of just the content-area.

Therefore, given our previous styles, the content-area would be 154 pixels wide
and 104 pixels tall. The distance between the outer border edges would be 200
pixels horizontally and 150 pixels vertically, and the distance between outer
margin edges would be 220 pixels by 170 pixels. The differences are shown side
by side in Figure 3.

F I G U R E 3
The two element sizing

models compared:
standards-compliant on

the left, old Explorer
model on the right.

Regardless of which approach makes more sense to you, the correct element box
model is the CSS model, and that’s the one used by IE6 when in strict mode. In
quirks mode, it uses the old Explorer model. This means that, simply by chang-
ing the DOCTYPE of a page, you can make IE6 radically alter a page’s layout
without changing a single character of your CSS.

1245xAPPA 7/17/02 9:26 AM Page 10

Because these two models are so different, this might seem to be an intractable
problem for any page that needs to be viewed in multiple browsers. This is not
necessarily the case. There are ways to avoid layout trouble by carefully con-
structing your document structure (see Project 11, “Positioning a Better
Design”) and by using the f laws in old-style parsers to serve up browser-specific
CSS without using JavaScript to do it (see “Tricking Browsers and Hiding
Styles” on the Web site).

Further Reading
If you are interested in reading more about DOCTYPE switching and the differences
between rendering modes or if you want to peruse more detailed tables of
DOCTYPEs and learn what modes they trigger in which browsers, here are some
good resources to try out.

CSS Enhancements in Internet Explorer 6
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp

This document provides an introduction to the concept of DOCTYPE switching,
a table summarizing how to trigger quirks or strict mode in IE6, and relatively
detailed explanations of the differences between the two modes.

Mozilla’s Quirks Mode
http://www.mozilla.org/docs/web-developer/quirks/

This small collection of documents explains the rationale behind DOCTYPE switch-
ing in Mozilla, provides a thorough listing of which DOCTYPEs will get you into
which mode, and offers a list of quirks. In many cases, the quirks link to entries
in Bugzilla, the Mozilla bug-tracking system, and provide an occasionally fasci-
nating insight into debates about these quirks and whether or not they needed
to be fixed at all.

11

Picking Your
Favorite Model
The subject of which
layout model makes more
“sense” has raged for
years now and shows no
sign of ever being settled.
Nonetheless, there is hope
for both camps: There is a
property proposed for
inclusion in CSS3 that
will enable the author to
decide which model to use
when sizing an element.
As of this writing, the
property was called
box-sizing, but be aware
that name could change
before the CSS3 box
model is finalized.

1245xAPPA 7/17/02 9:26 AM Page 11

1245xAPPA 7/17/02 9:26 AM Page 12

